Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1380655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638868

RESUMO

Background: The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods: Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results: We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion: Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.

2.
J Biol Chem ; 300(4): 107155, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479597

RESUMO

Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.

3.
FEBS J ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431775

RESUMO

Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis HV 1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.

4.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396628

RESUMO

CD8+ T cells play a role in the suppression of tumor growth and immunotherapy. Ion channels control the Ca2+-dependent function of CD8+ lymphocytes such as cytokine/granzyme production and tumor killing. Kv1.3 and KCa3.1 K+ channels stabilize the negative membrane potential of T cells to maintain Ca2+ influx through CRAC channels. We assessed the expression of Kv1.3, KCa3.1 and CRAC in CD8+ cells from ovarian cancer (OC) patients (n = 7). We found that the expression level of Kv1.3 was higher in patients with malignant tumors than in control or benign tumor groups while the KCa3.1 activity was lower in the malignant tumor group as compared to the others. We demonstrated that the Ca2+ response in malignant tumor patients is higher compared to control groups. We propose that altered Kv1.3 and KCa3.1 expression in CD8+ cells in OC could be a reporter and may serve as a biomarker in diagnostics and that increased Ca2+ response through CRAC may contribute to the impaired CD8+ function.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Ovarianas , Humanos , Feminino , Linfócitos T CD8-Positivos/metabolismo , Canais de Potássio/metabolismo , Prognóstico , Biomarcadores/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Canal de Potássio Kv1.3/metabolismo
5.
Proteins ; 92(2): 192-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794633

RESUMO

Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/química , Peptídeos/farmacologia , Peptídeos/química , Canais de Potássio/metabolismo , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
6.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140952, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640250

RESUMO

Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.


Assuntos
Anêmonas-do-Mar , Animais , Humanos , Anêmonas-do-Mar/química , Proteômica , Drosophila melanogaster/metabolismo , Austrália , Peptídeos/química , Dissulfetos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
7.
Rheumatology (Oxford) ; 62(SI3): SI304-SI312, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37871914

RESUMO

OBJECTIVES: Cardiovascular (CV) morbidity and mortality, and perpetuated synovial angiogenesis have been associated with RA. In our study we evaluated angiogenic factors in relation to vascular inflammation and function, and clinical markers in RA patients undergoing 1-year tofacitinib therapy. METHODS: Thirty RA patients treated with either 5 mg or 10 mg twice daily tofacitinib were included in a 12-month follow-up study. Eventually, 26 patients completed the study and were included in data analysis. Levels of various angiogenic cytokines (TNF-α, IL-6), growth factors [VEGF, basic fibroblast (bFGF), epidermal (EGF), placental (PlGF)], cathepsin K (CathK), CXC chemokine ligand 8 (CXCL8), galectin-3 (Gal-3) and N-terminal prohormone brain natriuretic peptide (NT-proBNP) were determined at baseline, and at 6 and 12 months after initiating tofacitinib treatment. In order to assess flow-mediated vasodilation, common carotid intima-media thickness (ccIMT) and carotid-femoral pulse-wave velocity, ultrasonography was performed. Synovial and aortic inflammation was also assessed by 18F-fluorodeoxyglucose-PET/CT. RESULTS: One-year tofacitinib therapy significantly decreased IL-6, VEGF, bFGF, EGF, PlGF and CathK, while it increased Gal-3 production (P < 0.05). bFGF, PlGF and NT-proBNP levels were higher, while platelet-endothelial cell adhesion molecule 1 (PECAM-1) levels were lower in RF-seropositive patients (P < 0.05). TNF-α, bFGF and PlGF correlated with post-treatment synovial inflammation, while aortic inflammation was rather dependent on IL-6 and PECAM-1 as determined by PET/CT (P < 0.05). In the correlation analyses, NT-proBNP, CXCL8 and Cath variables correlated with ccIMT (P < 0.05). CONCLUSIONS: Decreasing production of bFGF, PlGF or IL-6 by 1-year tofacitinib therapy potentially inhibits synovial and aortic inflammation. Although NT-proBNP, CXCL8 and CathK were associated with ccIMT, their role in RA-associated atherosclerosis needs to be further evaluated.


Assuntos
Artrite Reumatoide , Espessura Intima-Media Carotídea , Gravidez , Humanos , Feminino , Fator de Necrose Tumoral alfa , Seguimentos , Interleucina-6 , Fator de Crescimento Epidérmico/uso terapêutico , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fator A de Crescimento do Endotélio Vascular , Placenta/metabolismo , Artrite Reumatoide/complicações , Inflamação/complicações , Biomarcadores
8.
Toxins (Basel) ; 15(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37624263

RESUMO

Seven new peptides denominated CboK1 to CboK7 were isolated from the venom of the Mexican scorpion Centruroides bonito and their primary structures were determined. The molecular weights ranged between 3760.4 Da and 4357.9 Da, containing 32 to 39 amino acid residues with three putative disulfide bridges. The comparison of amino acid sequences with known potassium scorpion toxins (KTx) and phylogenetic analysis revealed that CboK1 (α-KTx 10.5) and CboK2 (α-KTx 10.6) belong to the α-KTx 10.x subfamily, whereas CboK3 (α-KTx 2.22), CboK4 (α-KTx 2.23), CboK6 (α-KTx 2.21), and CboK7 (α-KTx 2.24) bear > 95% amino acid similarity with members of the α-KTx 2.x subfamily, and CboK5 is identical to Ce3 toxin (α-KTx 2.10). Electrophysiological assays demonstrated that except CboK1, all six other peptides blocked the Kv1.2 channel with Kd values in the picomolar range (24-763 pM) and inhibited the Kv1.3 channel with comparatively less potency (Kd values between 20-171 nM). CboK3 and CboK4 inhibited less than 10% and CboK7 inhibited about 42% of Kv1.1 currents at 100 nM concentration. Among all, CboK7 showed out-standing affinity for Kv1.2 (Kd = 24 pM), as well as high selectivity over Kv1.3 (850-fold) and Kv1.1 (~6000-fold). These characteristics of CboK7 may provide a framework for developing tools to treat Kv1.2-related channelopathies.


Assuntos
Perciformes , Escorpiões , Animais , Filogenia , Peptídeos/farmacologia , Aminoácidos
9.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443733

RESUMO

Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Transporte Biológico , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/análise
10.
J Gen Physiol ; 155(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37212728

RESUMO

Voltage-gated K+ channels have distinct gates that regulate ion flux: the activation gate (A-gate) formed by the bundle crossing of the S6 transmembrane helices and the slow inactivation gate in the selectivity filter. These two gates are bidirectionally coupled. If coupling involves the rearrangement of the S6 transmembrane segment, then we predict state-dependent changes in the accessibility of S6 residues from the water-filled cavity of the channel with gating. To test this, we engineered cysteines, one at a time, at S6 positions A471, L472, and P473 in a T449A Shaker-IR background and determined the accessibility of these cysteines to cysteine-modifying reagents MTSET and MTSEA applied to the cytosolic surface of inside-out patches. We found that neither reagent modified either of the cysteines in the closed or the open state of the channels. On the contrary, A471C and P473C, but not L472C, were modified by MTSEA, but not by MTSET, if applied to inactivated channels with open A-gate (OI state). Our results, combined with earlier studies reporting reduced accessibility of residues I470C and V474C in the inactivated state, strongly suggest that the coupling between the A-gate and the slow inactivation gate is mediated by rearrangements in the S6 segment. The S6 rearrangements are consistent with a rigid rod-like rotation of S6 around its longitudinal axis upon inactivation. S6 rotation and changes in its environment are concomitant events in slow inactivation of Shaker KV channels.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Superfamília Shaker de Canais de Potássio , Superfamília Shaker de Canais de Potássio/genética , Metanossulfonato de Etila , Cisteína/genética , Cisteína/química , Potássio/metabolismo
11.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37242439

RESUMO

5-chloro-2-guanidinobenzimidazole (ClGBI), a small-molecule guanidine derivative, is a known effective inhibitor of the voltage-gated proton (H+) channel (HV1, Kd ≈ 26 µM) and is widely used both in ion channel research and functional biological assays. However, a comprehensive study of its ion channel selectivity determined by electrophysiological methods has not been published yet. The lack of selectivity may lead to incorrect conclusions regarding the role of hHv1 in physiological or pathophysiological responses in vitro and in vivo. We have found that ClGBI inhibits the proliferation of lymphocytes, which absolutely requires the functioning of the KV1.3 channel. We, therefore, tested ClGBI directly on hKV1.3 using a whole-cell patch clamp and found an inhibitory effect similar in magnitude to that seen on hHV1 (Kd ≈ 72 µM). We then further investigated ClGBI selectivity on the hKV1.1, hKV1.4-IR, hKV1.5, hKV10.1, hKV11.1, hKCa3.1, hNaV1.4, and hNaV1.5 channels. Our results show that, besides HV1 and KV1.3, all other off-target channels were inhibited by ClGBI, with Kd values ranging from 12 to 894 µM. Based on our comprehensive data, ClGBI has to be considered a non-selective hHV1 inhibitor; thus, experiments aiming at elucidating the significance of these channels in physiological responses have to be carefully evaluated.

12.
BMC Biol ; 21(1): 121, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226201

RESUMO

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Genômica , Inversão Cromossômica , Cisteína , Dissulfetos
13.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047188

RESUMO

Myeloid-derived suppressor cells (MDSCs) are key determinants of the immunosuppressive microenvironment in tumors. As ion channels play key roles in the physiology/pathophysiology of immune cells, we aimed at studying the ion channel repertoire in tumor-derived polymorphonuclear (PMN-MDSC) and monocytic (Mo-MDSC) MDSCs. Subcutaneous tumors in mice were induced by the Lewis lung carcinoma cell line (LLC). The presence of PMN-MDSC (CD11b+/Ly6G+) and Mo-MDSCs (CD11b+/Ly6C+) in the tumor tissue was confirmed using immunofluorescence microscopy and cells were identified as CD11b+/Ly6G+ PMN-MDSCs and CD11b+/Ly6C+/F4/80-/MHCII- Mo-MDSCs using flow cytometry and sorting. The majority of the myeloid cells infiltrating the LLC tumors were PMN-MDSC (~60%) as compared to ~10% being Mo-MDSCs. We showed that PMN- and Mo-MDSCs express the Hv1 H+ channel both at the mRNA and at the protein level and that the biophysical and pharmacological properties of the whole-cell currents recapitulate the hallmarks of Hv1 currents: ~40 mV shift in the activation threshold of the current per unit change in the extracellular pH, high H+ selectivity, and sensitivity to the Hv1 inhibitor ClGBI. As MDSCs exert immunosuppression mainly by producing reactive oxygen species which is coupled to Hv1-mediated H+ currents, Hv1 might be an attractive target for inhibition of MDSCs in tumors.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Linhagem Celular , Monócitos , Células Mieloides , Células Supressoras Mieloides/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
14.
Br J Pharmacol ; 180(16): 2064-2084, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848880

RESUMO

BACKGROUND AND PURPOSE: Despite its contradictory clinical performance, remdesivir (Veklury®) has a pivotal role in COVID-19 therapy. Possible contributions of the vehicle, sulfobutylether-ß-cyclodextrin (SBECD) to Veklury® effects have been overlooked. The powder and solution formulations of Veklury® are treated equivalently despite their different vehicle content. Our objective was to study Veklury® effects on initial membrane-coupled events of SARS-CoV-2 infection focusing on the cholesterol depletion-mediated role of SBECD. EXPERIMENTAL APPROACH: Using time-correlated flow cytometry and quantitative three-dimensional confocal microscopy, we studied early molecular events of SARS-CoV-2-host cell membrane interactions. KEY RESULTS: Veklury® and different cholesterol-depleting cyclodextrins (CDs) reduced binding of the spike receptor-binding domain (RBD) to ACE2 and spike trimer internalization for Wuhan-Hu-1, Delta and Omicron variants. Correlations of these effects with cholesterol-dependent changes in membrane structure and decreased lipid raft-dependent ACE2-TMPRSS2 interaction establish that SBECD is not simply a vehicle but also an effector along with remdesivir due to its cholesterol-depleting potential. Veklury® solution inhibited RBD binding more efficiently due to its twice higher SBECD content. The CD-induced inhibitory effects were more prominent at lower RBD concentrations and in cells with lower endogenous ACE2 expression, indicating that the supportive CD actions can be even more pronounced during in vivo infection when viral load and ACE expression are typically low. CONCLUSION AND IMPLICATIONS: Our findings call for the differentiation of Veklury® formulations in meta-analyses of clinical trials, potentially revealing neglected benefits of the solution formulation, and also raise the possibility of adjuvant cyclodextrin (CD) therapy, even at higher doses, in COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Ligação Proteica
15.
Toxins (Basel) ; 15(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36668861

RESUMO

A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 µM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.


Assuntos
Venenos de Escorpião , Humanos , Animais , Venenos de Escorpião/química , Filogenia , Bloqueadores dos Canais de Potássio/química , Sequência de Aminoácidos , Peptídeos/química , Escorpiões/química
16.
Mol Pharm ; 20(1): 255-266, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331024

RESUMO

The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 µM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.


Assuntos
Lipopolissacarídeos , Doenças Neuroinflamatórias , Camundongos , Animais , Distribuição Tecidual , Radioisótopos de Gálio/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos/química , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inflamação/metabolismo , Tomografia por Emissão de Pósitrons
17.
Pharmaceutics ; 14(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36559052

RESUMO

Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.

18.
Sci Rep ; 12(1): 22168, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550366

RESUMO

Most species of bee are capable of delivering a defensive sting which is often painful. A solitary lifestyle is the ancestral state of bees and most extant species are solitary, but information on bee venoms comes predominantly from studies on eusocial species. In this study we investigated the venom composition of the Australian great carpenter bee, Xylocopa aruana Ritsema, 1876. We show that the venom is relatively simple, composed mainly of one small amphipathic peptide (XYTX1-Xa1a), with lesser amounts of an apamin homologue (XYTX2-Xa2a) and a venom phospholipase-A2 (PLA2). XYTX1-Xa1a is homologous to, and shares a similar mode-of-action to melittin and the bombilitins, the major components of the venoms of the eusocial Apis mellifera (Western honeybee) and Bombus spp. (bumblebee), respectively. XYTX1-Xa1a and melittin directly activate mammalian sensory neurons and cause spontaneous pain behaviours in vivo, effects which are potentiated in the presence of venom PLA2. The apamin-like peptide XYTX2-Xa2a was a relatively weak blocker of small conductance calcium-activated potassium (KCa) channels and, like A. mellifera apamin and mast cell-degranulating peptide, did not contribute to pain behaviours in mice. While the composition and mode-of-action of the venom of X. aruana are similar to that of A. mellifera, the greater potency, on mammalian sensory neurons, of the major pain-causing component in A. mellifera venom may represent an adaptation to the distinct defensive pressures on eusocial Apidae.


Assuntos
Venenos de Abelha , Toxinas Biológicas , Abelhas , Camundongos , Animais , Meliteno , Apamina , Austrália , Venenos de Abelha/química , Fosfolipases A2 , Peptídeos , Dor/induzido quimicamente , Mamíferos
19.
Sci Rep ; 12(1): 22023, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539587

RESUMO

Glioblastoma (GBM) is the most aggressive glial tumor, where ion channels, including KCa1.1, are candidates for new therapeutic options. Since the auxiliary subunits linked to KCa1.1 in GBM are largely unknown we used electrophysiology combined with pharmacology and gene silencing to address the functional expression of KCa1.1/ß subunits complexes in both primary tumor cells and in the glioblastoma cell line U-87 MG. The pattern of the sensitivity (activation/inhibition) of the whole-cell currents to paxilline, lithocholic acid, arachidonic acid, and iberiotoxin; the presence of inactivation of the whole-cell current along with the loss of the outward rectification upon exposure to the reducing agent DTT collectively argue that KCa1.1/ß3 complex is expressed in U-87 MG. Similar results were found using human primary glioblastoma cells isolated from patient samples. Silencing the ß3 subunit expression inhibited carbachol-induced Ca2+ transients in U-87 MG thereby indicating the role of the KCa1.1/ß3 in the Ca2+ signaling of glioblastoma cells. Functional expression of the KCa1.1/ß3 complex, on the other hand, lacks cell cycle dependence. We suggest that the KCa1.1/ß3 complex may have diagnostic and therapeutic potential in glioblastoma in the future.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Transdução de Sinais/fisiologia , Carbacol
20.
J Fungi (Basel) ; 8(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422036

RESUMO

The Kv1.3 channel has become a therapeutic target for the treatment of various diseases. Several Kv1.3 channel blockers have been characterized from scorpion venom; however, extensive studies require amounts of toxin that cannot be readily obtained directly from venoms. The Pichia pastoris expression system provides a cost-effective approach to overcoming the limitations of chemical synthesis and E. coli recombinant expression. In this work, we developed an efficient system for the production of three potent Kv1.3 channel blockers from different scorpion venoms: Vm24, AnTx, and Ts6. Using the Pichia system, these toxins could be obtained in sufficient quantities (Vm24 1.6 mg/L, AnTx 46 mg/L, and Ts6 7.5 mg/L) to characterize their biological activity. A comparison was made between the activity of tagged and untagged recombinant peptides. Tagged Vm24 and untagged AnTx are nearly equivalent to native toxins in blocking Kv1.3 (Kd = 4.4 pM and Kd = 0.72 nM, respectively), whereas untagged Ts6 exhibits a 53-fold increase in Kd (Kd = 29.1 nM) as compared to the native peptide. The approach described here provides a method that can be optimized for toxin production to develop more selective and effective Kv1.3 blockers with therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...